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A B S T R A C T

Polymethacrylimide (PMI) foams own the highest specific stiffness and strength of all foams.
In situ x-ray micro computed tomography (CT) is used to map three-dimensional (3D) mi-
crostructures of this representative closed-cell foam under quasi-static compression. The strain
fields obtained via digital volume correlation reveal divergent types (discrete or spreading) of
deformation banding for the PMI foam with different densities (52 or 75 kg m−3). Significant
cell collapse occurs in the deformation bands, leading to ∼40% reduction of the mean cell
size, and alignment of cell orientations. Microstructure-based finite element analysis confirms
that elastic buckling of cell walls dominates cell collapse, and the buckling strength of walls
depends highly on their thicknesses and inclination angles. An edge segmentation technique
is then used to quantify the morphology and buckling strength index of cell walls. The spatial
distribution of the weakest 3% cell walls correlates well with the modes of deformation banding.
Based on elastic buckling of cell walls, new analytical models are developed to predict the
strength–density scaling law and stress–strain curves of the PMI foam, which agree well with
the experimental results.

1. Introduction

Cellular materials, made of metals, ceramics and polymers, etc., show excellent mechanical and biological properties (Gibson
and Ashby, 1999; Kang et al., 2018; Janik and Marzec, 2015), and have been utilized in various engineering applications for energy
absorption, sandwich cores, acoustic damping, thermal insulation, catalysis, and tissue repair (Kim et al., 2017; Janik and Marzec,
2015; Kang et al., 2018; Chen et al., 2019). It is now available to produce cellular materials with specific mechanical properties via
tailoring porosity and cell morphology (Banhart, 2001; Bonatti and Mohr, 2017). Controlling formulation, processing and structure
of cellular materials, and understanding the resultant mechanical response (especially deformation and failure) have long been
of interest for fundamental and applied research (Lee et al., 2017; Bonatti and Mohr, 2017; Banda and Ghosh, 2018). However,
exploring the structure–property relations at the cell scale has been an experimental challenge for real three-dimensional (3D)
foams (Saadatfar et al., 2012; Sun and Li, 2018).

Extensive efforts have been devoted to characterizing bulk mechanical properties of cellular materials (including honey-
combs) (Gibson and Ashby, 1999; Zaretsky et al., 2012; Chen et al., 2019; Cote et al., 2004; Wang and McDowell, 2005; Shan
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et al., 2019). Gibson and Ashby (1999) (GA) proposed the well-known structure–property relationships for open- and closed-cell
foams, i.e., the power laws which connect the Young’s modulus and collapse strength of foams to those of matrix and relative
density, and the exponents depend highly on cell deformation modes. However, the details of cell deformation and collapse are
largely ignored when using the GA model (Kenesei et al., 2004; Wang et al., 2010) since microstructural characterizations are
largely unavailable. In addition, an important structural parameter in the GA model for closed-cell foams, the fraction of solid in
cell edges, is usually replaced by an empirical value (Mangipudi et al., 2016), because of the difficulty in measuring it directly.
In terms of bulk stress–strain curves, the GA model (Gibson and Ashby, 1999) presents a piece-wise formulation describing three
deformation stages. Based on the GA model, modeling the stress–strain curve of aluminum foams was attempted considering the
effect of initial cell size distribution under the sequential-collapse assumption to be validated (Kenesei et al., 2004), but failed to
reproduce the whole stress–strain curve. Many one-dimensional (1D), empirical or phenomenological constitutive models proposed
for foams (Rusch, 1970; Hanssen et al., 2002; Liu and Subhash, 2004; Avalle et al., 2007; Zheng et al., 2014; Wang et al., 2018), can
reproduce experimental stress–strain curves under certain circumstances, but contain empirical parameters that vary with cellular
structures (e.g. initial density), and need experimental verifications. Other phenomenological models (Deshpande and Fleck, 2000;
Ehlers and Markert, 2003; af Segerstad et al., 2008) considering microscopic deformation mechanisms are usually too complex to
present explicit stress–strain relations, and thus not friendly for engineering applications, except aiding numerical simulations.

Deformation of foam materials under compression begins with an overall compression of the cellular structure, followed by
local collapse of cells via elastic–plastic buckling of cell edges/walls (Gibson and Ashby, 1999), which gives rise to a stress
plateau. During the collapse stage, deformation proceeds in localized deformation bands that nucleate and propagate within the
cellular structure (Issen et al., 2005; Zaiser et al., 2013). Previous studies attempted to characterize the structural heterogeneity of
foams, in terms of such quantities as local density, Minkowski anisotropic index (Saadatfar et al., 2012), cell size and cell aspect
ratio (Sun et al., 2017). Recently, we proposed a single buckling strength index for cell walls incorporating their morphological
parameters (Chai et al., 2019). The buckling strength index is proved effective in revealing the initial weak zones of a foam
sample (Chai et al., 2019). However, the assumption that cell walls buckle elastically remains to be verified. In addition, how
cell wall buckling contributes to the density–strength scaling and the stress–strain response of 3D foams is a significant but pending
question (Bonatti and Mohr, 2017; Sun and Li, 2018).

Studies on microscopic deformation and failure of cells commonly resort to 2D postmortem analysis via scanning electron
microscopy (Arezoo et al., 2011; Fan et al., 2018) or Voronoi-based modeling (Alkhader and Vural, 2010; Zheng et al., 2014).
However, microstructures of real foams are 3D in nature; there exist distinct differences in quantification of local density, cell size
and morphology of foams between 2D and 3D systems. Voronoi models also have substantial drawbacks when applied to closed-cell
foams since they are unable to sufficiently capture the complexity of real cell structures (plateau borders, thickness variation and
curvedness within a cell wall, etc.). Based on synchrotron x-ray sources, in situ micro computed tomography (CT) has been developed
to characterize the evolution of 3D cellular structures (Saadatfar et al., 2012; Patterson et al., 2016; Roth et al., 2018). Micro CT can
provide cell deformation details at a micron scale (Patterson et al., 2016), but quantification of microstructural changes throughout a
deformation process was rarely reported, e.g. deformation bands evolution, cell collapse routes. Cell wall parameters were connected
with the compressive strength of a virtual 2D foam (Sun et al., 2017), but little work has yet been done for an actual 3D foam.
The thin walls of polymer foams (< 10 μm) demand sub-micron spatial resolutions as provided by micro CT. The density effects on
structural inhomogeneity and deformation modes of foams were not investigated. Recently, numerical models based on real, 3D
cell structures have been developed to capture the actual meso-scale geometry (Sun et al., 2014; Naouar et al., 2015; Sun et al.,
2016b; Chen et al., 2017). These studies have provided general insights into the deformation mechanisms of cellular materials.
Finite element (FE) modeling with real cell structures is also adopted in this study to explore the cell-wall buckling mechanism
quantitatively.

Polymethacrylimide (PMI) foams are superior to conventional foams in specific mechanical properties, and have been widely
utilized in aerospace industry (Li et al., 2000; Arezoo et al., 2011; Grace et al., 2012). In the present study, quasi-static compression
tests are conducted on this representative closed-cell foam, with a home-made material test system (MTS). In situ, micro CT is used
to map the evolution of 3D microstructures of the PMI foam with two initial densities. The axial strain fields quantified via digital
volume correlation (DVC) (Schrijer and Scarano, 2008; Bar-Kochba et al., 2015; Pan and Wang, 2017; van Dijk et al., 2019) reveal
different deformation modes for two types of foams. Microstructure-based FE analysis confirms that cell walls buckle elastically,
which leads to cell collapse. Then analytical models are developed to predict the strength–density relation and stress–strain curves
of the PMI foam incorporating the microstructural evolution.

2. Experimental

2.1. Materials

Commercially available PMI foams are used as the experimental materials. Two initial foam densities, 𝜌0 = 52 kg m−3 and
75 kg m−3, are chosen to study the density effects on microstructures and deformation modes. The apparent initial density is
measured with a 100 × 100 × 60 mm3 foam sample. The solid fraction of foams is calculated from the apparent foam density
and full PMI density, i.e. 1200 kg m−3 (Li et al., 2000), which is 0.043 and 0.062 for the 52 kg m−3 and 75 kg m−3 foam samples,
respectively. The as-received foam block is machined into cylindrical or cuboidal samples via laser cutting. The laser power is kept
low to minimize damage to the cells adjacent to cutting planes.
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Fig. 1. CT characterizations of two as-received foams with initial density 𝜌0 = 52 and 75 kg m−3. (a) 3D renderings, and pole figures of the 𝑐-axis orientation
of cells, obtained from the gyration tensor analysis. (b) Cell size (equivalent diameter) distribution. Symbols denote experimental data, and dashed lines, fitting
with the Gaussian function.

2.2. Initial CT characterization

3D CT characterizations on initial foam samples are conducted in the X-ray Imaging and Biomedical Application Beamline
(BL13W1) of the Shanghai Synchrotron Radiation Facility (Chen et al., 2012). The nominal resolution is chosen as 3.25 μm per pixel.
Large cylindrical samples (diameter 6.5 mm, height 5.0 mm) are used to provide more statistical information on cells. The x-ray
energy is set at 15 keV, and the sample-to-scintillator distance is 150 mm. The exposure time is 1 s. Each tomography scan comprise
1200 projections in 0–180◦, which are then reconstructed into 3D images with a software PITRE (Chen et al., 2012). To quantify 3D
foam structures, the volume images are processed in four steps: (i) an image is binarised into the solid phase and air phase via global
thresholding segmentation (TS); (ii) the top-hat method (Bright and Steel, 1987) is used to recover those thin walls not extracted by
TS; (iii) the fraction of solid is calculated and compared with the experimental measurements; adjust thresholds and repeat steps (i)
and (ii) until the calculated and measured values are consistent (Saadatfar et al., 2012); (iv) the classic watershed is applied for cell
partitioning to quantify cell morphology. The parameters are selected to minimize over-segmentation. Cell partitioning is visually
inspected to repair over-segmented cells (especially at large deformations).

Characterizations of initial cell morphology in the two types of foams are presented in Fig. 1. The volume renderings (Fig. 1a)
indicate that the foam cells are largely polyhedrons. Gyration tensor is introduced to characterize cell morphology (Arkın and Janke,
2013; Yao et al., 2018; Li et al., 2020),

𝐺𝛼𝛽 = 1
𝑉m

𝑉m
∑

𝑖=1

(
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m (in terms of the number of voxels enclosed by the cell walls). The eigenvalues of the gyration tensor are calculated as 𝑅1, 𝑅2 and
𝑅3 (𝑅1 > 𝑅2 > 𝑅3). Then, a characteristic ellipsoid can be constructed with three semi-axes oriented along the eigenvectors, and
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where 𝑘, 𝑙 = 1, 2, 3.
The orientation pole figures of the 𝑐-axis for the two types of foams (Fig. 1a) show that both foams are isotropic with no

preferred orientations of cells. Cell sphericity for the two types of foams is largely 0.9–1.0, indicating that the cells are close to
regular polyhedrons. Cell size is defined as the equivalent sphere diameter of the pore volume enclosed by the cell. The cell size
distributions of two types of foams can both be described with a Gaussian function. The mean and standard deviation of the cell
size from fitting are 323 ± 1 μm and 74 ± 1 μm for the 52 kg m−3 foam, and 302 ± 1 μm and 65 ± 1 μm for the 75 kg m−3 foam,
respectively.

2.3. In situ CT testing

A home-made MTS device (Fig. 2) is used for in situ x-ray CT under uniaxial compression at beamline 2-BM, Advanced Photon
Source (Bie et al., 2017; Chai et al., 2019; Li et al., 2020). The nominal resolution is 0.87 μm per pixel, much higher than that in
initial CT characterizations, and can provide deformation details of cell walls. Smaller samples of 3.5 × 3.5 × 3.7 mm are used to
match the field of view, and the dimension along the loading direction (the 𝑧-axis) is 3.7 mm. The sample is sandwiched between
two steel platens inside a polycarbonate (PC) tube. The upper platen is lowered to apply compression loading while the lower platen
is fixed. When the preset displacement or strain level is reached, the upper platen is suspended and CT scan is carried out on the
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Fig. 2. Schematic diagram of in situ CT testing system including a miniature MTS and x-ray imaging system. Inset: photograph of the experimental setup at
beamline 2-BM of APS.

deformed sample after the platen force reaches a nearly stable state (about 30 s later). Two or three scans along the sample height
direction are performed to cover the whole gauge length at each deformation stage. X-rays transmitted through the PC tube and the
foam sample form images on the scintillator which are captured by a camera for 3D reconstruction. The force–displacement curve
measured with MTS is used to derive the axial engineering stress–strain curve.

The loading velocity is set at 0.74 μm s−1, resulting in a nominal strain rate of 0.0002 s−1. A previous study (Arezoo et al., 2013)
showed that the rate sensitivity of the Rohacell PMI foam is minor, especially for low-density foams (≤ 110 kg m−3). Therefore,
strain rate effects of the PMI foams are not discussed here.

2.4. Digital volume correlation

To study deformation dynamics of foams, an iterative DVC technique (Bar-Kochba et al., 2015) is adopted to map 3D strain
fields. The gray-scale volume images are used for image correlation. To reduce computational cost, the volume images are scaled
down to one tenth of its original size along each axis with the bicubic interpolation method. The region of interest (ROI) in the
initial configuration is divided into proper-sized subsets, and then the subsets are tracked in the deformed configuration. The
widely used correlation criterion, normalized sum of squared differences (NSSD) (Criminisi et al., 2007), is adopted here for pattern
matching. NSSD eliminates effectively the influence of light and shade differences between the initial and deformed images. The
NSSD correlation coefficient, 𝐶NSSD, for a subset is expressed as

𝐶NSSD(𝐮) =
1
2
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where 𝐼0(𝐩𝑖) and 𝐼1(𝐩𝑖+𝐮) refer to the intensity values of a voxel 𝑖 located at 𝐩𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) in the subsets before and after deformation,
respectively. 𝐮 is the displacement vector of the subset. 𝐼0 and 𝐼1 are the mean intensities of the subset before and after deformation,
respectively. 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧 is the total number of voxels in the subset, where 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are the subset size in the 𝑥-, 𝑦- and
𝑧-directions, respectively. 𝐶NSSD ranges from 0 to 1, and a larger 𝐶NSSD indicates lower correlation. The displacement calculation
in the subsets with 𝐶NSSD greater than a threshold 𝐶 th

NSSD is deemed invalid and set to zero.
In iterative DVC, multiple cycles of tracking and correlation are conducted to gain high accuracy of deformation calculation. In

a specific cycle, the program flow is as follows. First of all, the displacement vector yielding the minimum 𝐶NSSD is identified as the
incremental displacement in the current cycle. The total displacement of the subset is the summation of the previous displacement
and the incremental one. The 3D displacement field is obtained via interpolation from all voxels. After that, a low-pass convolution
filter (Schrijer and Scarano, 2008) is used to smooth the field. The filter strength controls the smooth degree and shows the optimal
dampening and modulation characteristics over the range of 0.001–0.01 (Schrijer and Scarano, 2008). Finally, the initial and
deformed images are warped (via trilinear interpolation) symmetrically by the current displacement field (Bar-Kochba et al., 2015).
If the warped initial and deformed images reach the same configuration, iteration is stopped and the final displacement field is
obtained. Otherwise, iterative correlation, filter and warping are carried out on the warped images from the current cycle. The
subset size for the following cycle is reduced by half and remains constant when it reaches a lower limit. The corresponding strain
fields are evaluated by calculating the Lagrangian strain tensor.
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Fig. 3. Error analyses for DVC. (a) Gray-scale 𝑥𝑧 slices of foams before (initial) and after (deformed) virtual 3D Gaussian deformation in the loading or 𝑧
direction. (b) and (c) Comparison of the 𝑥𝑧 contour plot of the predefined and calculated displacement and strain 𝜀𝑧𝑧 fields.

Table 1
Parameters and precision for DVC analyses.

Parameter Value

Initial subset size (pixel) (32, 32, 64)
Minimum subset size (pixel) (32, 32, 32)
𝐶 th
NSSD 0.5

Filter strength 0.075
Displacement precision (pixel) 0.08
Strain precision (%) 0.41

where 1 ≤ 𝑖, 𝑗, 𝑚 ≤ 3 (1, 2 and 3 corresponding to 𝑥, 𝑦 and 𝑧, respectively), and the Einstein summation convention is applied. The
central difference method is used to calculate the partial differential or gradient of the displacement field. For boundary voxels, a
single-sided difference method is adopted instead of the central difference method.

The subset size plays an important role in the calculation accuracy of DVC. Since iterative correlation is adopted, the lower limit
for subset size or minimum subset size has higher influence on DVC analysis than initial subset size. The minimum subset size is
identified according to the cellular structure. The diameters of most cells (Fig. 1(b)) in the two types of foams are smaller than
500 μm (56 pixels for scaled images). Assume that a half cell contains sufficient features for track. Then the subset size is supposed
to exceed 28 pixels. The program flow requires that the subset size be the power of 2. Therefore, (𝑁𝑥, 𝑁𝑦, 𝑁𝑧) = (32, 32, 32) is set
as the minimum subset size while (32, 32, 64) as the initial one. 𝑁𝑧 is larger in the initial subset since deformation is mainly along
the 𝑧-direction in the experiments. The parameters used in DVC analyses are summarized in Table 1.

To evaluate the performance of DVC, a virtual displacement field is imposed to the gray-scale images (Fig. 3a) in two steps (van
Dijk et al., 2019). Firstly, the current coordinates of the centers of all reference (undeformed) voxels are calculated based on a
3D Gaussian displacement field 𝐮 = (0, 0, 𝑢𝑧); 𝑢𝑧(𝑥, 𝑦, 𝑧) = 5 exp

[

−(𝑥2 + 𝑦2 + 𝑧2)∕(2 × 302)
]

pixel, where 𝑥, 𝑦, 𝑧 are the coordinates of
voxels. Secondly, the gray-scale values are calculated for the regularly spaced centers of all current (deformed) voxels by linear
interpolation. This linear interpolation is based on an unstructured set of data points, and the standard Delaunay triangulation is
used. 𝐶 th

NSSD is set as 0.5 to minimize invalid correlation. The calculated displacement field via DVC is presented in Fig. 3b, and
agrees well with the preset displacement field. The calculated and preset displacement fields are then used to derive the strain
component 𝜀𝑧𝑧, and the strain maps are presented in Fig. 3c. The calculated strain field coincides with the preset one, and can
reproduce well the strain localization features, which is critical for identifying deformation bands in the foam samples. A common
and efficient measure for comparing results is the precision (van Dijk et al., 2019), defined as the standard deviation of the error
distribution 𝑒(𝑥, 𝑦, 𝑧). 𝑒(𝑥, 𝑦, 𝑧) is obtained by comparing the calculated results and the exact solution. The precision for displacement
calculation is 0.08 pixel and for 𝜀𝑧𝑧 strain calculation is 0.41%, sufficient for strain mapping in foam materials.

3. Experimental results

3.1. In situ CT analysis

The axial engineering stress−strain curves of the two types of foam samples along with the volume renderings at different strains
are presented in Fig. 4. Here, positive stress refers to compression, and positive strain, to contraction. The solid curves with stress
drops are from in situ CT test with pauses, consistent with the dashed curves from continuous loading. The continuous stress–strain
curve is averaged from five repeated tests. The stress–strain curve can be divided into three stages, i.e. pre-collapse, collapse and
densification. Here ‘‘pre-collapse’’ is used instead of ‘‘elastic’’ (Wang et al., 2018) because plastic deformation can occur in cells at
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Fig. 4. In situ CT testing of the two types of foams (𝜌0 = 52 and 75 kg m−3). (a) Stress–strain curves. The solid curves with stress drops are from in situ CT test
with pauses (step-hold), while the dashed curves are from continuous loading. (b) and (c) Volume renderings at different axial strains for the 52 kg m−3 and
the 75 kg m−3 foam samples, respectively. Color-coding refers to axial strain fields (𝜀𝑧𝑧) obtained via DVC. Positive strain refers to contraction.

this stage (Sun et al., 2016a, 2014). The Young’s modulus and collapse strength increase while the initiation strain of densification
decreases with increasing initial foam density (Fig. 4a). The collapse strength of the foam is taken as the stress at the inflection
point (indicated by arrows) between the pre-collapse and collapse stage.

Axial strain fields (𝜀𝑧𝑧(𝑥, 𝑦, 𝑧)) across the foam sample throughout its deformation process are obtained via the DVC technique.
Fig. 4b and c show strain maps on the 𝑥𝑦 and 𝑥𝑧 slices for the 52 kg m−3 and 75 kg m−3 foam samples, respectively. Correlation
is carried out between tomographs at two adjacent strain levels and the strain field is mapped on the previous tomograph. The
strain fields show three stages of deformation, consistent with the stress–strain curve. At the pre-collapse stage (e.g. 3%), the foam
samples deform via an overall compression of the cell skeleton accompanied by slight bending or buckling of some ‘‘weak’’ walls,
resulting in a nearly uniform strain field with low magnitudes. Local buckling of these walls leads to some higher-than-average
strain values (marked by dashed circles). During the collapse stage, deformation banding occurs in both types of foam samples, as
shown in strain maps at 8%–50%. Pronounced strain localization (about 5 times the average strain across the sample) and cell wall
buckling are detected within these bands. After about 60% strain, deformation bands coalesce, and the incremental strain becomes
minor across the sample, resulting in the macroscopic densification of the foam samples.

Deformation modes are different for the two types of foam samples. Multiple, discrete deformation bands are formed sequentially
in the 52 kg m−3 sample (marked as B1–B5, Fig. 4b), while spreading bands initiated at the ends of the 75 kg m−3 sample develop
alternately and propagate gradually across the sample (marked by arrows in Fig. 4c). The thickness of a single deformation band,
calculated as the full width at half maximum of the strain profiles, is 300–500 μm, spanning across 1–2 cell layers. The propagation
velocity of the upper deformation front is estimated (from strain maps at 8%–19% strain, Fig. 4c) as 0.74 μm s−1. In addition to in situ
CT test, a total of ten compression tests are conducted with in situ optical imaging to examine the repeatability of the deformation
modes. For most (∼80%) of the 75 kg m−3 samples, deformation bands are initiated at one or two sample ends and spread toward
sample center, while the majority of the 52 kg m−3 samples (∼70%) show discrete deformation bands.

3.2. Cell deformation and failure

Cell partitioning (Section 2.2) is applied to binarised volume data at different strains to separate deformed cells. During cell
collapse, cell walls buckle and two initially separated walls come into contact with each other. Some fully contacted walls split the
original cell into two or more disconnected spaces which are defined as new cells. Counting the number of cells in each volume data
indicates a slight increase in the cell number when the axial strain exceeds about 40%. We remove cells whose equivalent diameter
is smaller than 25 μm to reduce the noise.
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Fig. 5. Microstructural evolution of the two types of foams at different axial strains. (a) and (b) Cell size distributions. Symbols refer to experimental data, and
dashed lines, fitting with the Gaussian function. (c) and (d) Pole figures of the 𝑐-axis orientation of cells.

Fig. 5a and b show the evolution of cell size distributions for the two types of foams. Curves at only five representative strains are
given for clarity. The dashed lines are Gaussian fitting to the experimental data. The cell size distributions conform to the Gaussian
function throughout the deformation process. They remain approximately unchanged when the axial strain is smaller than 8%. After
that, their peaks shift toward smaller cells as deformation progresses. The mean cell size decreases by about 40% at 70% strain for
both types of foams. The distributions become broadened due to localized cell collapse, and then narrowed after about 50% strain.
Cell collapse leads to considerable shrinkage of cell volume, and consequently the observed peak shift and shape change in the
cell size distributions. However, the cells are not totally compacted in the densification stage, and a certain amount of voids are
arrested in the collapsed cells. Evolution of the orientation of the cell 𝑐-axis for the two types of foams is presented in Fig. 5c and d.
The cells are randomly oriented initially, consistent with the results for larger samples (Fig. 1b). When the axial strain exceeds 8%,
the 𝑐-axis orientations of cells converge gradually to the loading direction (𝑧 axis) as deformation progresses, leading to increasing
anisotropy in the sample. The reason is that most cells after collapse become flat with their normals (the 𝑐-axis) oriented along the
loading direction, regardless of their initial orientations. These microstructural changes provide first-hand information or verificaton
for phenomenological constitutive models and numerical modeling.

To clarify how cells collapse, we track the deformation and collapse of four typical cells (A–D, Fig. 6a–d) in the 75 kg m−3

sample. As shown in Fig. 6e, cells A, B and C are in the same cell layer (0.8 mm away from the sample top), but with different
shapes. The position of cell D is about 0.9 mm lower than that of cell A, but cell D is similar in size and shape to cell A. Cells A
and D have higher sphericity than cells B and C which are elongated along the 𝑥 and 𝑧 direction, respectively. A curvature index
𝐶 proposed by Koenderink and Van Doorn (1992) is mapped on the cell surfaces to highlight the wrinkles of cell walls, which is
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Fig. 6. Deformation and collapse of four typical cells A–D in the 75 kg m−3 foam sample at different strains. (a)–(d) correspond to cells A–D, respectively.
Color-coding is based on curvature index, 𝐶, which highlights buckling of cell walls (wrinkles). (e) Initial positions of four cells in the sample. (f) Normalized
cell volume 𝑉 as a function of axial strain for the four cells. Symbols denote experimental measurements, and dashed lines, fitting with the Boltzmann sigmoid
function.

defined as

𝐶 =

√

𝜅2
1 + 𝜅2

2
2

, (4)

where 𝜅1 and 𝜅2 are two principal curvatures of a point on a cell surface.
The curvature is around zero across all cell walls at the initial state. At 3% strain, wrinkles initiate on one of the walls for cells

A–D (marked by arrows), while edges remain intact. With increasing loading, the nucleated wrinkles grow and new wrinkles form on
other walls. Cells A–C collapse abruptly at 19% strain, when the deformation band initiated at the upper end of sample propagates
into this layer (see the strain map at 14% strain, Fig. 4c). Cell D has a similar size and shape to those of cell A, but collapses at a
much later time. The wrinkles in cell D stay stable after 8% strain (marked by the dashed rectangle), and then regrow at 29% strain,
leading to cell collapse at around 50% strain when the upper deformation front arrives. Therefore, cell deformation and collapse
are highly affected by their locations and shapes. Similar results are observed in the 52 kg m−3 sample.

Cell collapse in the PMI foam initiates via local cell wall buckling, and different walls show different resistance to buckling. For
cell B, wrinkles initiate earlier in a wide wall (numbered 1) than in an adjacent narrow one (numbered 2). The wider wall seems
more prone to buckle. However, obvious wrinkles are observed on a slender wall of cell C, which is expected to be buckling resistant
since the width of this wall is small. The reason is that this wall is initially curved, as marked by the dashed line. The wrinkles
are a result of compression-induced bending (marked by the arrow) rather than buckling. Since the cell walls are largely flat, this
bending mode in the PMI foam is not dominant.

Evolution of the normalized cell volume 𝑉 with the axial strain 𝜀 for four cells A–D is presented in Fig. 6f. Here 𝑉 = 𝑉 ∕𝑉0, and
𝑉 and 𝑉0 are the current and initial volume of a cell, respectively. 𝑉 (𝜀) can be described with a Boltzmann sigmoid function,

𝑉 (𝜀) = 𝐴2 +
𝐴1 − 𝐴2

1 + exp
(

𝜀−𝜁
𝜂

) , (5)
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Fig. 7. Characterizations of cell wall morphology in the two types of foam samples (𝜌0 = 52 kg m−3 and 75 kg m−3). (a) Volume rendering after edge segmentation.
(b) Equivalent diameter distribution of cell walls. (c) Cell wall thickness distributions. Symbols refer to experimental data, and dashed lines, fitting with the
Gaussian function. (d) Edge number distribution of cell walls. Experimental measurements for a PU foam (Montminy et al., 2004) and liquid foams (Matzke,
1946), and theoretical predictions from the Kelvin model and Weaire–Phelan (WP) model (Weaire and Phelan, 1994) are also presented for comparison. (e) Face
number distribution of cells. Experimental measurements for a PU foam (Montminy et al., 2004) is presented for comparison.

where 𝐴1 = 1 and 𝐴2 are the initial and final values of 𝑉 ; 𝜁 is the strain at the curve center (marked by ‘‘+’’) and is defined
as the collapse moment; 𝜂 is the slope or ‘‘rate’’ of change in 𝑉 , and describes the steepness of the curve, with a larger value
denoting a shallower curve. Cells A, B and C collapse at similar strains (𝜁 = 18.6%±0.3%, 17.3%±0.3% and 19.6%±0.1%) and
rates (𝜂 = 2.5%±0.4%, 2.3%±0.3% and 1.4%±0.1%), while cell D collapses at a much higher strain (𝜁 = 58.8%±1.3%) and a
lower rate (𝜂 = 7.0%±0.7%). The residual normalized volume 𝐴2 is 30.2%±1.1%, 22.8%±1.4%, 34.1%±0.01% and 24.3%±5.2%
for the four cells, respectively. The collapse moment of cells is consistent with the time when the deformation bands pass by them,
indicating that local cell collapse leads to deformation banding there. Cells with wrinkled walls (like D) are actually in a metastable
state, before triggered by deformation banding in a neighboring layer.

3.3. Cell wall morphology

Since buckling of cell walls dominates cell collapse, 3D characterizations of cell wall morphology are conducted for the two types
of foams (Fig. 7). The edge segmentation technique (Chai et al., 2019) is used to separate edges and walls, mainly based on three
steps: (i) edge core detection on slices by the 2D Harris operator (Harris and Stephens, 1988); (ii) estimating the edge thickness
distribution from slices using the distance transform method (Sun et al., 2017); (iii) local segmentation of edge and wall voxels with a
global threshold, determined as the edge thickness corresponding to a 90% cumulative probability in the edge thickness distribution.
The optimum threshold is chosen iteratively as 9.0 pixels and 12.5 pixels for the 52 kg m−3 and 75 kg m−3 foams, respectively. The
separated walls and edge skeletons are illustrated in Fig. 7a. The geometric parameters of cell walls can be extracted and analyzed,
as illustrated in Fig. 7b–e. Cell wall size is defined as the equivalent diameter of wall projections along the thickness direction. Cell
wall thickness is calculated as its volume divided by the projection area. The figures show that the 52 kg m−3 foam exhibits a much
wider distribution of cell wall size and shapes, which introduces higher diversity into 3D structures.

Compared to the 52 kg m−3 foam, the 75 kg m−3 foam has smaller cell walls on average (152 μm versus 142 μm), and a narrower
distribution of cell wall size (Fig. 7b), consistent with the cell size distribution (Fig. 1b). The cell wall thickness distributions of the
two types of foam samples follow a Gaussian distribution (Fig. 7c). The mean and standard deviation of the wall thickness from
fitting are 5.49±0.02 μm and 1.06±0.02 μm for the 52 kg m−3 foam, slightly lower than those (6.65±0.02 μm and 1.48±0.02 μm) of the
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Table 2
Parameters in FE modeling of the PMI foam.

Bulk density of full-density PMI (kg m−3) 1200
Young’s modulus of full-density PMI (MPa) 5200
Poisson’s ratio of full-density PMI 0.4
Yield strength of full-density PMI (MPa) 90
Friction coefficient between plate and sample 0.2
Loading velocity of plate (μm s−1) 8.7

75 kg m−3 foam. The mean wall thickness here is comparable to those reported for the Rohacell PMI foam of the same density (Li
et al., 2000; Arezoo et al., 2011). Fig. 7d shows that the cell-wall shapes of PMI foams vary widely from triangles to heptagons,
with the majority as quadrilaterals and pentagons. There are few polygons with eight or more edges in both types of foams. The
PMI foam has a much more diverse cell-wall shape distribution than those measured from a 34 kg m−3 PU foam (Montminy et al.,
2004) and liquid foams (Matzke, 1946), and hypothesized in area minimizing models, e.g. Kelvin model and Weaire–Phelan (WP)
model (Weaire and Phelan, 1994). This highlights the facts that the topological structures of polymeric foams do not follow those
of ideal theoretical structures. The face number per cell also varies widely from 6 to 16 in the two types of foams (Fig. 7e). The
cell shape distribution of the 52 kg m−3 PMI foam is much wider than that of the 75 kg m−3 foam, and is similar to that of the
34 kg m−3 PU foam (Montminy et al., 2004).

Since the edges and walls are separated, the initial fraction of solid in edges, 𝜙0, can be calculated accurately. The results are
24.5% and 39.0% for the 52 kg m−3 and 75 kg m−3 foam samples, respectively. 𝜙0 of the PMI foam is much smaller than conventional
polymer foams with similar densities, e.g., 𝜙0 ≃ 0.8 for an 80 kg m−3 rigid polyurethane (PU) foam (Gibson and Ashby, 1999). The
reason is that cell walls in the PMI foam are flat, and similar in thickness to edges. However, the PU foams generally have spherical
cells with thin curved walls, resulting in a large plateau border and high 𝜙0.

4. Finite element modeling

3D FE modeling with real PMI foam structures is used here to address the following question: whether cell walls are subjected to
elastic buckling during cell collapse. The initial structures of the foam sample are used as the starting configuration for FE analysis.
The 75 kg m−3 sample is chosen for the illustrative purpose. Since the cell walls are thin, mesh size should be sufficiently small
(∼2 μm here) to guarantee at least two mesh layers across the wall thickness, and the resultant mesh number is prohibitively large
for the whole configuration. In order to reduce computational cost, a volume of 0.52 × 0.52 × 0.52 mm3 is randomly cropped from
the middle part of the binarized volume data, and then converted into a surface mesh with triangular elements. The surface mesh is
refined with interaction, aspect ratio, and holes considered, and finally converted into a volume mesh. The meshed volume has a
total of 2,865,263 elements (Fig. 8a). The modified quadric tetrahedron element (C3D10M) is used to improve stress accuracy (Chen
et al., 2017).

The volume mesh configuration is then imported into commercial code Abaqus/Explicit, along with material properties of the
full-density PMI (Li et al., 2000), and boundary and loading conditions for FE analysis. An elastic-perfectly-plastic model is applied
to the full-density PMI, and the relevant parameters listed in Table 2. In reality, movement of the sides of the cropped volume are
restricted by the foam surrounding it. Therefore, six dummy plates are placed on each free face of the foam sample (Patterson et al.,
2016), thereby preventing the foam from expanding in any direction (i.e. zero Poisson’s ratio). Six degrees of freedom of all the
plates are constrained, except the top/bottom plates which are allowed to move downward/upward along the 𝑧-axis or compressing
direction. The loading velocity is set at 8.7 μm s−1, resulting in a strain rate of 0.03 s−1.

The axial stress–strain curve along with snapshots of the numerical and experimental samples at different axial strain levels
(marked by squares) is shown in Fig. 8b–d. The collapse strength of the numerical sample is 0.57 MPa, much lower than the
experimental measurement, because the numerical configuration for FE analysis contains only three cell layers, and such a reduced
size leads to lower stresses (Bastawros et al., 2000). An 𝑥𝑧 section is chosen to show the structural evolution of inner cell walls,
labeled 1–7 for convenience. The equivalent plastic strain 𝜀pq (Safaei et al., 2014) is mapped on cells (Fig. 8c) to monitor plasticity
initiation in them.

Cell walls are compressed elastically (𝜀pq = 0) and exhibit no curvature at very small axial strains (𝜀 < 0.6%). With increasing
loading, the cell walls with small thicknesses and/or high inclination angles (e.g. walls 2 and 4) buckle first, leading to slight
inflection in the stress–strain curve (marked by the arrow, Fig. 8(b)). Wavy wrinkles form in these walls (marked by arrows in the
snapshot at 1.3% strain, Fig. 8c), consistent with the experimental configuration at 3% strain (Fig. 8d) where walls 2 and 4 also
buckle in the pre-collapse stage. 𝜀pq remains zero in walls 2 and 4, indicating that they buckle elastically. Under further compression,
the buckling displacements of walls increase, plastic deformation occurs in the wrinkles, and cell walls with larger thicknesses and
lower inclination angles start to buckle, resulting in a plateau in the stress–strain curve. For instance, walls 7 and 1 are observed
to buckle at 2.1% and 2.6% strain, respectively, both with negligible plastic strain across the walls. Buckling of walls 1 and 7 also
occurs in a similar way in the experimental sample, as illustrated in the snapshot at 8% strain. However, the experimental buckling
displacements are much smaller than those in the numerical sample, because the axial strain is largely localized at the sample
ends in the experiment. Remarkable plastic deformation accumulates in the wrinkled cell walls at 8% strain. Nonetheless, the walls
nearly perpendicular to the loading direction (e.g. walls 3 and 6) remain intact even at high axial strains (e.g. 11%). Therefore,
the buckling resistance of cell walls is highly dependent on their thicknesses and inclination angles, which will be quantitatively
discussed in Section 5.1.
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Fig. 8. FE modeling of the foam with an initial density of 75 kg m−3. (a) CT-derived 3D model of the initial foam. (b) Axial stress–strain curve. (c) Snapshots
of the numerical foam sample at different strains corresponding to the squares on the stress–strain curve. The equivalent plastic strain 𝜀pq is mapped on cells.
(d) Snapshots of the experimental foam sample at two axial strains.

Table 3
Structural and mechanical parameters of two types of PMI foam samples. For structural parameters, mean values are given along with standard deviations in
parentheses. 𝜌0: initial density; 𝑑c: cell size, defined as the equivalent sphere diameter; 𝑆G: sphericity; 𝑁w: number of walls per cell; 𝑑w: cell wall size, defined
as the equivalent circle diameter; 𝑡w: wall thickness; 𝑁s: number of edges per wall; 𝜎c: collapse strength; 𝜀c: collapse strain.
𝜌0 (kg m−3) Cell parameters Cell wall parameters Mechanical parameters

𝑑c (μm) 𝑆G 𝑁w 𝑑w (μm) 𝑡w (μm) 𝑁s 𝜎c (MPa) 𝜀c
52 323 (74) 0.95 (0.04) 11.4 (3.4) 152 (67) 5.49 (1.06) 4.8 (1.3) 1.48 (0.13) 0.066 (0.007)
75 302 (65) 0.94 (0.04) 9.2 (2.7) 142 (48) 6.65 (1.48) 4.4 (1.1) 0.87 (0.13) 0.057 (0.004)

5. Discussions

Before elaborating discussions on the experimental results, the morphological parameters of cells and cell walls and the
mechanical parameters of the foam sample for the two types of foams are summarized in Table 3. The initial density shows significant
influence on the microstructures and thus bulk mechanical properties of the PMI foams.

5.1. Prediction of deformation bands

Prediction of the location and moment for deformation band nucleation is critical for understanding macroscopic responses of
cellular materials. The experimental and numerical results suggest that elastic buckling of cell walls determines cell collapse and
thus deformation band nucleation. To quantify the the buckling resistance of cell walls, a strength index 𝜆w has been proposed
by Chai et al. (2019) based on the elastic buckling theory of thin plates (Timoshenko and James, 1961).

𝜆w = 𝐾(ℎw, 𝑏w)
𝑡2w
𝑏2w

1
sin 𝛽

, (6)
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Fig. 9. (a) Probability distribution of strength index of cell walls. Symbols denote experimental data, and dashed lines, fitting with the lognormal (probability
dnsity and cumulative distribution) function. (b) Spatial distribution of strength index along the sample height direction. 𝜆w1, 𝜆w2 and 𝜆w3 are thresholds
corresponding to a cumulative probability of 1%, 2% and 3%, respectively. For 𝜌0 = 52 kg m−3, 𝜆w1 = 0.0028, 𝜆w2 = 0.0033 and 𝜆w3 = 0.0037; for 𝜌0 = 75
kg m−3, 𝜆w1 = 0.0029, 𝜆w2 = 0.0038 and 𝜆w3 = 0.0044. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

where 𝐾(ℎw, 𝑏w) is the elastic buckling coefficient. 𝐾 = (𝑏w∕ℎw + ℎw∕𝑏w)2 for ℎw∕𝑏w ≤
√

2, and 𝐾 = 4 for ℎw∕𝑏w >
√

2. 𝑡w, ℎw, 𝑏w
and 𝛽 are the thickness, equivalent height, equivalent width and inclination angle of a cell wall, respectively. For clarity, a local
coordinate system 𝑂𝑥∗𝑦∗𝑧∗ is created on the center plane of the wall, where the 𝑥∗-axis is parallel to the projection of the loading
direction on the wall, the 𝑧∗-axis is oriented along the wall normal, and 𝑂 is set at the barycenter. ℎw and 𝑏w are defined as

ℎw = 1
𝑥∗max − 𝑥∗min

∫

𝑥∗max

𝑥∗min

ℎ(𝑥∗)d𝑥∗,

𝑏w = 1
𝑦∗max − 𝑦∗min

∫

𝑦∗max

𝑦∗min

𝑏(𝑦∗)d𝑦∗,
(7)

where ℎ(𝑥∗) is the intersection line between the 𝑦∗𝑧∗-plane and wall; 𝑏(𝑦∗) is the intersection line between the 𝑥∗𝑧∗-plane and wall.
The buckling strength for cell walls of two types of foams are calculated and the probability distributions are presented in Fig. 9a.

The strength factor exhibits a lognormal distribution (dashed curves), and the probability density function (PDF) is

𝑃 (𝜆w) =
1

𝜋𝜔𝜆w
exp

[

−
(ln 𝜆w − 𝜇)2

2𝜔2

]

, (8)

where 𝜇 and 𝜔 are, respectively, the mean and standard deviation of the natural logarithm of 𝜆w. The parameters from fitting are
𝜇 = −4.15 ± 0.03 and 𝜔 = 0.83 ± 0.02 for the 52 kg m−3 foam, and are 𝜇 = −3.65 ± 0.02 and 𝜔 = 0.97 ± 0.01. The cell walls of the
75 kg m−3 foam are statistically stronger than those of the 52 kg m−3 foam, giving rise to a higher collapse strength.

Under quasi-static loading, damage nucleation can occur anywhere at the weakest link of sample. Therefore, we study the spatial
distribution of the weakest 3% cell walls sorted by 𝜆w (Fig. 9b and c). Color-coding (red, yellow and green) refers to three regimes
of buckling strength index, i.e., (0, 𝜆w1], (𝜆w1, 𝜆w2], and (𝜆w2, 𝜆w3], respectively. Here, 𝜆w1, 𝜆w2 and 𝜆w3 are thresholds corresponding
to a cumulative probability of 1%, 2% and 3% (Fig. 9a), respectively. The weakest 3% (𝜆w ≤ 𝜆w3) walls in the 52 kg m−3 foam
are located approximately at five positions where the five deformation bands nucleate in the experiment (B1–B5, Fig. 4b). The
region with the highest density of flexible walls consists with the first nucleated band B1. However, the weakest 3% walls are more
uniformly distributed across the 75 kg m−3 foam sample. There are no obvious concentration of weak walls and thus preferential
nucleation sites for deformation banding as in the 52 kg m−3 sample. The divergent distributions of weak walls for the two types
of foams originate from different cell wall morphologies (Fig. 7).
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Previous studies showed that the roughness and damage induced by cutting degrades the stiffness and strength of the foam
sample ends (Sun et al., 2016a; Meng et al., 2019). For the 75 kg m−3 foam, the strength distribution of cell walls is approximately
uniform across the initial foam block. The degraded sample ends are thus weaker than those of the interior, which leads to first
nucleation of deformation localization there. In addition, cell collapse at this layer weakens the neighboring layer which is likely
to collapse sequentially to induce a spreading band. However, the sample ends are not necessariliy weaker than the interior in
the heterogenous 52 kg m−3 sample. Deformation localization always initiates at the weakest layer across the sample, resulting in
discrete deformation bands. Therefore, the spatial distribution, rather than the extent (Zaiser et al., 2013), of structural disorder
plays a critical role in the nucleation of deformation bands.

5.2. Strength–density scaling law

The GA model (Gibson and Ashby, 1999) provided different scaling laws for different kinds of foams, based on their cell
deformation modes. Cells of metallic foams (e.g. aluminum foam) own thick cell walls (e.g. 0.36 mm for AlporasTM (Sun et al.,
2017)) and edges, and generally collapse via plastic bending of edges and stretching of walls. For conventional polymer foams
(e.g. rigid PU foam, polyethylene foam), cells collapse via elastic buckling of cell edges, since cell walls are so thin (∼2 μm) that the
buckling resistance of walls is negligible. However, the cell wall thickness of the PMI foam is between those of the metallic foams
and conventional polymer foams while its fraction of solid in walls is much higher than those of the latter two. Cell collapse in PMI
foams is dominated by elastic buckling of cell walls rather than cell edges. So we propose a new strength–density relationship for
PMI foams.

Appendix A shows that the bulk axial stress 𝜎 can be linearly related to the axial stress on upright walls 𝜎w,u. At the collapse
point, i.e. 𝜎 = 𝜎c, a certain number of walls (including upright walls) in a layer buckle elastically and approximately simultaneously,
activating the deformation banding in the foam sample. Therefore, 𝜎w,u reaches its critical buckling strength 𝜎B. According to the
elastic buckling theory of thin plates (Timoshenko and James, 1961), 𝜎B ∝ 𝐸s(𝑡w∕𝑏w)2, where 𝐸s is the Young’s modulus of wall
material. Combining with Eq. (A.5), we have

𝜎c
𝐸s

∝
𝑡2w
𝑏2w

𝜌0
𝜌s

. (9)

where 𝜌0 and 𝜌s are the initial densities of the foam and full-density material, respectively.
For a closed-cell foam, the thickness to width ratio of walls is statistically related to the relative density as (Gibson and Ashby,

1999; Wang and McDowell, 2005)

𝑡w∕𝑏w ∝ (1 − 𝜙0)𝜌0∕𝜌s. (10)

Substituting Eq. (10) into (9), we can express 𝜎c of the PMI foam as

𝜎c
𝐸s

∝ (1 − 𝜙0)2
(

𝜌0
𝜌s

)3
. (11)

The gas-pressure contribution to the collapse strength is not considered here because it is negligible under quasi-static condi-
tions (Sun and Li, 2015).

Voronoi modeling (Roberts and Garboczi, 2001) showed (1−𝜙0) decreases with increasing relative density in a power law form,
i.e. (1 − 𝜙0) ∝

(

𝜌0∕𝜌s
)−𝛾 . 𝛾 fitted from their simulation data is 0.62, similar to that calculated from our experimental data (0.58).

Thus, Eq. (11) can be simplified as

𝜎c
𝐸s

= 𝐶w

(

𝜌0
𝜌s

)3−2𝛾
, (12)

where 𝐶w is a geometric constant of proportionality; the exponent is 1.84. The collapse strength of the PMI foams in our study and
previous studies (Arezoo et al., 2011) are summarized in Fig. 10. The dash-dotted curve is plotted according to Eq. (12) with the
best-fit 𝐶w = 0.049 ± 0.001. The experimental data agree well with the theoretical prediction.

For comparison, the collapse strength of rigid PU foams in previous studies (Calvert et al., 2010; Thirumal et al., 2010; Goods
et al., 1998) are also summarized in Fig. 10, along with the theoretical strength–density relationship from the GA model.

𝜎c
𝐸s

= 𝐶e

(

𝜌0
𝜌s

)2
, (13)

where 𝐶e is a geometric constant of proportionality. The increase of collapse strength with increasing foam density is consistent
with Eq. (13), with 𝐶e = 0.072 ± 0.001. In addition, the strengths of the PMI foam are considerably higher than those of the PU
foam with similar densities, mainly owing to a higher modulus of matrix and a lower fraction of solid in edges.

5.3. Prediction of stress–strain curves

On the basis of the strength model (Eq. (11)), we can derive a new stress–strain relationship for the PMI foam under quasi-static
uniaxial compression throughout the plastic deformation process. The axial stress 𝜎 as a function of the axial plastic strain 𝜀p can
be expressed as

𝜎(𝜀p)
𝐸s

= 𝐶𝜎 (1 − 𝜙(𝜀p))2
(𝜌f (𝜀p)

𝜌s

)3

. (14)
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Fig. 10. Collapse strength versus initial foam density for PMI and rigid PU foams. Symbols: experimental measurements; curves: theoretical predictions.

Fig. 11. Evolution of (a) the Poisson’s ratio and (b) the open-cell content with the axial plastic strain for two types of foams. Symbols refer to experimental
measurements, and dashed lines, fitting with the exponential (a) and the Boltzmann sigmoid function (b), respectively.

Here 𝐶𝜎 is a geometric constant of proportionality. 𝜀p = 𝜀 − 𝜀c, where 𝜀c is the axial strain at the collapse point. 𝜌f and 𝜙 are the
foam density and the fraction of solid in edges at the current deformation state.

𝜌f and 𝜙 both increase with increasing axial strain. 𝜌f changes with 𝜀p in the following way,

𝜌f (𝜀p) =
𝜌0

1 − (1 − 2𝜈n)𝜀p
, (15)

where 𝜈n is the nominal Poisson’s ratio defined as the lateral strain divided by the axial strain. 𝜈n quantified from three in situ
optical imaging tests is presented in Fig. 11a. 𝜈n of two types of foams is similar and exhibits a similar trend. It decreases with
increasing plastic strain and becomes approximately constant when the strain exceeds about 0.2. The experimental data are fitted
with an exponential function,

𝜈n(𝜀p) = 𝜈n,∞ + 𝐴𝜈 exp
(

−
𝜀p
𝜀p,0

)

. (16)

The fitting parameters 𝜈n,∞, 𝐴𝜈 and 𝜀p,0 are obtained to be 0.029 ± 0.02%, 0.052 ± 0.1% and 7.7% ± 0.3%, respectively.
Cell collapse leads to crushing of cell walls and turns the closed-cell foam gradually into an open-cell foam. The fraction of solid

in walls 1-𝜙 decreases as the volume fraction of crushed walls (𝑓cw) increases due to cell collapse. 𝑓cw is defined as the volume
of crushed walls normalized by the volume of total walls. 𝑓cw is difficult to measure from experiments. The open-cell content 𝑓oc,
defined as the percentage of the volume of connected pores in the total pore volume, is calculated instead. Evolution of 𝑓oc(𝜀p) is
plotted in Fig. 11b, and is similar for two types of foams. 𝑓oc is initially around zero and increases abruptly with increasing strain
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Fig. 12. Comparison between experimental stress–strain curves (solid curves) and model predictions (dashed curves).

in the collapse stage, and finally becomes stable at 100% when the sample enters the densification stage. Assume 𝑓cw(𝜀p) is similar
to 𝑓oc(𝜀p). Therefore, 𝑓oc(𝜀p) and 𝑓cw(𝜀p) can be described with a Boltzmann sigmoid function,

𝑓oc(𝜀p) or 𝑓cw(𝜀p) = 𝐴2 +
−exp(−𝜁∕𝜂) − 𝐴2

1 + exp
( 𝜀p−𝜁

𝜂

) . (17)

Here 𝐴2 refer to the final value of 𝑓oc or 𝑓cw. 𝜁 is the strain at the curve center, and 𝜂 is the slope. Fig. 11b indicates 𝐴2 = 1 for
𝑓oc. The other parameters obtained from nonlinear fitting are 𝜁 = 20.4% ± 2.6% and 𝜂 = 12.5% ± 1.6%.

Therefore, 𝜙(𝜀p) is expressed as

𝜙(𝜀p) = 1 − (1 − 𝜙0)
[

1 − 𝑓cw(𝜀p)
]

(18)

Substituting Eqs. (15) and (18) into Eq. (14), we obtain the 1D constitutive relation for closed-cell foams under quasi-static
compression as

𝜎(𝜀p)
𝐸s

= 𝐶𝜎 (1 − 𝜙0)2
(

1 − 𝑓cw(𝜀p)
)2

[

𝜌0∕𝜌s
1 − (1 − 2𝜈n(𝜀p))𝜀p

]3
. (19)

In this model, four parameters, i.e. 𝐶𝜎 , 𝐴2, 𝜁 and 𝜂, are needed to be determined from experimental results. When 𝜎(𝜀p) is normalized
by (1−𝜙0)2(𝜌0∕𝜌s)3, the stress–strain curves of foams with different initial densities coincide. The parameters obtained from nonlinear
fitting are 𝐶𝜎 = 3.40±0.01, 𝐴2 = 0.75±0.04%, 𝜁 = 20.2%±0.002 and 𝜂 = 18.4%±0.05%. The model shows that the rate effects of PMI
foams are dominated by the rate sensitivity of the elastic modulus of base polymers.

The stress–strain curves predicted by Eq. (19) are compared with the experimental curves (Fig. 12). This model reproduces well
the experimental curves from collapse to densification. Compared to previous models, the fitting parameters in this model have clear
physical meanings, and are independent of the initial foam density. Therefore, the model may be applied to other cellular materials
where cells also collapse via elastic buckling of walls (e.g. low-density honeycombs (Cote et al., 2004; Shan et al., 2019)). In addition,
although it is a volume-average model, it incorporates two microscopic effects of cell collapse, i.e. hardening via local densification,
and softening via cell-wall failure. Plastic deformation of cellular materials mainly takes place in deformation bands. Local density
rise in the bands leads to an increase in bulk density of the foam sample and thus a growth in bulk axial stress. However, significant
cell wall crushing occurs in the bands and leads to an increase in 𝜙 and a decrease in the number of load-carrying members (walls),
and thus a reduction in bulk axial stress. Therefore, the axial stress remains approximately constant during the collapse stage. In the
densification stage, the survived walls are locked and do not crush any more, i.e. 𝜙 becomes approximately constant, and further
increase in density due to compression leads to a monotonic stress increase.

However, deformation localization, as illustrated by DVC, is not explicitly considered in the constitutive model. It has been
a challenge to integrate microscopic deformation characteristics (e.g. cell morphology, strain fields) into continuum models. Two
approaches may be considered to take a step forward. The first one is statistical average or homogenization on mesoscopic behaviors
of cells or its counterparts (Schraad and Harlow, 2006; Wang et al., 2018; Beckmann and Hohe, 2016). The modeling accuracy
depends on the selected stochastic material representations through the use of PDFs for relevant cell parameters. These PDFs,
assumed previously to be Gaussian (Schraad and Harlow, 2006) or Weibull (Wang et al., 2018), can be identified directly from in situ
CT measurements (e.g. Eqs. (5) and (8)). The other one is the strain localization theory proposed by Rudnicki and Rice (1975). It has
been widely used in deformation analyses of porous rocks and foams (Issen et al., 2005) to predict (shear or compaction) deformation
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banding. Deformation banding was assumed as an instability in the constitutive description of homogeneous deformation. The strain
gradient (Forest et al., 2005; Zaiser et al., 2013) can be implemented to consider the size and boundary effects critical for the foams,
by introducing a characteristic length scale. The 3D strain fields from DVC, including morphology of deformation bands, may provide
input database and constraints for theoretical predictions. In addition, mesoscopic FEM based on real 3D structures is a promising
way of constitutive modeling of cellular materials, considering the rapid development of computation power and techniques.

6. Conclusions

Quasi-static uniaxial compression tests are conducted on the PMI foam with two initial densities, 52 kg m−3 and 75 kg m−3. In
situ CT is used to track the evolution of their 3D microstructures. The strain fields are mapped via DVC with the displacement and
strain precision as 0.08 pixel and 0.41%, respectively. Edge segmentation is used to quantify the morphology and buckling strength
indices of cell walls. Microstructure-based FE analysis is carried out to reveal buckling mechanisms of walls. The conclusions are
summarized as follows:

• Multiple, discrete deformation bands is prone to form sequentially in the 52 kg m−3 foam sample, while spreading deformation
bands prefer to initiate at sample ends and propagate across the 75 kg m−3 foam, as a result of divergent spatial distributions
of weakest cell walls or structural heterogeneity.

• Local cell-wall buckling (marked as a gradual increase in local curvature of wall) contributes to cell collapse and thus
deformation banding, which leads to about 40% reduction of cell size and reorientation of cells in the band. Collapse-induced
volume shrinkage of single cells with bulk strain follows a Boltzmann sigmoid function. FE analyses verify that cell walls
buckle elastically and the buckling resistance of cell walls is highly dependent on their thicknesses and inclination angles.
This can be quantified with the buckling strength index. The probability distribution of the buckling strength index satisfies a
lognormal distribution, and shows that the cell walls of the 75 kg m−3 foam sample is statistically stronger than those of the
52 kg m−3 foam sample, consistent with the collapse and plateau stresses. The spatial distribution of the weakest 3% walls
(sorted by strength index) exhibits different characteristics for the two types of foams: concentrated in multiple discrete regions
in the 52 kg m−3 sample while distributed nearly uniformly across the 75 kg m−3 sample, consistent with their macroscopic
deformation modes. The spatial distribution, rather than the extent, of structural heterogeneity determines the nucleation of
deformation bands.

• Based on the elastic buckling mechanism of cell walls, a new strength–density scaling law is proposed for the PMI foam
and agrees well with the experimental data. Based on the strength model, an analytical constitutive model is developed to
describe the plastic stress–strain curves incorporating the effects of cell collapse. The model can reproduce the stress plateau
and densification stages for the two types of PMI foams, with only four fitting parameters independent of initial foam density.
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Appendix A

The axial stress distribution on a cutting plane (cross-section) perpendicular to the loading direction is inhomogeneous; the
walls with lower inclination (𝛽) angles carry smaller loads. We choose an arbitrary wall, with the longitudinal section illustrated in
Fig. A.1, to derive the relationship between the axial stress on the wall and 𝛽. A displacement 𝛿ℎ is applied to the wall, and induces
compression and bending forces in it. The compression force can be calculated as

𝐹c = 𝐸s𝑏w𝑡w
𝛿ℎ
ℎw

sin2 𝛽, (A.1)

where 𝐸s is the Young’s modulus of wall material. 𝑡w, 𝑏w and ℎw are the thickness, equivalent width and height of the wall. The
bending force can be calculated as

𝐹b =
1
12

𝐸s𝑡
3
w𝑏w

𝛿ℎ
ℎ3w

sin3 𝛽 cos 𝛽. (A.2)
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Fig. A.1. Stress analysis for an inclined cell wall of length ℎw, width 𝑏w and thickness 𝑡w. 𝛿ℎ: displacement applied. 𝐹c and 𝐹b: force components induced in
the wall. 𝛽: inclination angle. 𝜎w: axial stress on the cross-section of the wall.

Then the axial stress on the wall 𝜎w is calculated as

𝜎w =
𝐹c sin 𝛽 + 𝐹b cos 𝛽

𝑏w𝑡w∕ sin 𝛽

= 𝐸s
𝛿ℎ
ℎ

sin4 𝛽
(

1 + 1
12

𝑡2

ℎ2
cos2 𝛽

)

.
(A.3)

For a real foam sample, the thickness to height ratio for cell walls (𝑡w∕ℎw) is less than 0.1, and the second term in the parentheses
of Eq. (A.3) is negligible compared to the first term. Then, we have 𝜎w ≃ 𝜎w,u sin

4 𝛽, where 𝜎w,u = 𝐸s𝛿ℎ∕ℎ is the axial stress on an
upright wall (𝛽 = 90◦). Therefore, the wall with a higher inclination angle carries a larger load.

The stress on a wall and the edges enclosing it is approximately the same considering strain continuity. The axial stress 𝜎 along
the loading direction on an arbitrary cutting plane (cross-section) perpendicular to the loading direction can be calculated as

𝜎 = 𝜎w,u

∑𝑛
𝑖=1 𝑆𝑖 sin

4 𝛽𝑖
𝑆f

, (A.4)

where 𝛽𝑖 is the inclination angle for wall 𝑖. 𝑆𝑖 is the total area of wall 𝑖 and the edges enclosing it intercepted by the cross-section.
Each edge is assumed to be equally shared by the walls attached to it. 𝑛 is the number of walls intercepted by this cross-section. 𝑆f
is the total cross-sectional area of the foam including the pore areas between walls.

For the cutting plane located at 𝑧c, the summation ∑𝑛
𝑖=1 𝑆𝑖 sin

4 𝛽𝑖 = 𝑓 (𝑧c)𝑆s(𝑧c), where 𝑆s is the total area of solid intercepted by
the cutting plane. Since each cross-section contains a sufficiently large number of cells and walls with various sizes and orientations,
𝑓 (𝑧c) and 𝑆s(𝑧c) both vary little between different cutting planes. For a macroscopically uniform isotropic form, 𝑆s(𝑧c)∕𝑆f ∝ 𝜌0∕𝜌s.
Therefore,

𝜎 ∝ 𝜎w,u
𝜌0
𝜌s

. (A.5)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijplas.2020.102730.
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